D. Program(有点难度的线性DP)
...大约 1 分钟
题目
题意
给一个长度为n的‘+’,‘-’序列,表示+1和-1
在给m个查询,问忽略[l,r]之间的序列,能走到多少个不同的数字
思路
- 分为前后缀计算,前缀计算比较简单关键是后缀计算
- 后缀上,需要关注能够到达的最小值和最大值
- 定义sufL[i]和sufR[i]分别表示为到达的最小值和最大值
- 可以得出转移方程
- now = s[i] == '+' ? 1 : -1;
- sufR[i] = max(sufR[i + 1] + now, 0);
- sufL[i] = min(sufL[i + 1] + now, 0);
代码
const int N = 2e5+10;
char s[N];
int preL[N], preR[N], pre_cur[N];
int sufL[N], sufR[N];
void solve()
{
int n, m;
cin >> n >> m;
cin >> s + 1;
preL[0] = preR[0] = pre_cur[0] = 0;
for (int i = 1; i <= n;i ++)
{
pre_cur[i] = pre_cur[i - 1] + (s[i] == '+' ? 1 : -1);
preL[i] = min(pre_cur[i], preL[i - 1]);
preR[i] = max(pre_cur[i], preR[i - 1]);
}
sufL[n + 1] = sufR[n + 1] = 0;
for (int i = n; i >= 1;i --)
{
int now = s[i] == '+' ? 1 : -1;
sufR[i] = max(sufR[i + 1] + now, 0);
sufL[i] = min(sufL[i + 1] + now, 0);
// debug2(sufL[i], sufR[i]);
}
for (int i = 1; i <= m; i++)
{
int l, r;
cin >> l >> r;
l--;r++;
int maxx = max(0, preR[l]), minn = min(0, preL[l]);
maxx = max(maxx, sufR[r] + pre_cur[l]);
minn = min(minn, sufL[r] + pre_cur[l]);
// debug2(maxx, minn);
cout << maxx - minn + 1 << endl;
}
}
Powered by Waline v2.15.5