线段树最大连续子段板子😂单调栈
...大约 5 分钟
题目
题意
- 给一个 n(1≤n≤1e5) 和长为 n 的数组 a(-30≤a[i]≤30)
- 设 b 为 a 的一个非空连续子数组
- 输出 sum(b)-max(b) 的最大值
思路
- 正解
- 从数组a的范围我们可以看出一点端倪
- 枚举 max(b),把 > max(b) 的去掉,分裂出每个子段都求一遍最大子段和再减去枚举的 max(b)。
- 所有结果的最大值即为答案。
- 适用范围更广的(其实是为了贴板子)
一种简单的最大连续子段板子O(N)
//b[j] = max{b[j - 1] + a[j],a[j]}, 1 <= j <= n
int max_subsegment(int a[],int n){
int result = 0,b = 0;
int begin = 0,end = 0;//记录最大子段的起始,终止下标
for(int i = 0; i < n;i++){
if(b > 0){
b += a[i];
}else{
b = a[i];
begin = i;
}
if(b > result){
result = b;
end = i;
}
}
return result;
}
线段树分治板子O(logN)
struct node{
int l,r;
int sum,ms;//maxsum
int ml,mr;//maxl,maxr
}tree[N*4];
void PushUp(int i)
{
tree[i].sum=tree[i<<1].sum+tree[i<<1|1].sum;
tree[i].ml=max(tree[i<<1].sum+tree[i<<1|1].ml,tree[i<<1].ml);
tree[i].mr=max(tree[i<<1|1].sum+tree[i<<1].mr,tree[i<<1|1].mr);
tree[i].ms=max(max(tree[i<<1].ms,tree[i<<1|1].ms),tree[i<<1].mr+tree[i<<1|1].ml);
}
void build(int i,int l,int r)
{
tree[i].l=l,tree[i].r=r;
if(l==r)
{
tree[i].sum=tree[i].ml=tree[i].mr=tree[i].ms=a[l];//最小线段的值
return ;
}
int mid=(l+r)>>1;
build(i<<1,l,mid);
build(i<<1|1,mid+1,r);
PushUp(i);
}
void update(int i,int pos,int val)
{
if(tree[i].l==tree[i].r)
{
tree[i].ms=tree[i].ml=tree[i].mr=tree[i].sum=val;
return ;
}
int mid=(tree[i].l+tree[i].r)>>1;
if(pos<=mid)
update(i<<1,pos,val);
else update(i<<1|1,pos,val);
PushUp(i);
}
node query(int i,int l,int r)
{
if(l<=tree[i].l&&tree[i].r<=r)
return tree[i];
int mid=(tree[i].l+tree[i].r)>>1;
if(r<=mid) return query(i<<1,l,r);
else if(l>mid) return query(i<<1|1,l,r);
else
{
node x=query(i<<1,l,r),y=query(i<<1|1,l,r),res;
//合并答案
res.sum=x.sum+y.sum;
res.ml=max(x.sum+y.ml,x.ml);
res.mr=max(y.sum+x.mr,y.mr);
res.ms=max(max(x.ms,y.ms),x.mr+y.ml);
return res;
}
}
- 回到题目上的做法
- 先利用单调栈找出以每个节点为最大值左边界和右边界(单调栈经典思路)
- 枚举所有点,用左边界和右边界之后,在这个区间内查询最大子段,和减当前这个点的值就是答案
- 注意,最大子段不一定包含这个最大值,看似逻辑上有bug,但是枚举了所有点,一定有枚举到正确的答案最大的情况
- 如果不包含这个最大值,但是减掉这个最大值,只会越小,不可能更新答案
- 所以这样的做法是正确的
代码
#include<bits/stdc++.h>
#define debug1(a) cout<<#a<<'='<< a << endl;
#define debug2(a,b) cout<<#a<<" = "<<a<<" "<<#b<<" = "<<b<<endl;
#define debug3(a,b,c) cout<<#a<<" = "<<a<<" "<<#b<<" = "<<b<<" "<<#c<<" = "<<c<<endl;
#define debug4(a,b,c,d) cout<<#a<<" = "<<a<<" "<<#b<<" = "<<b<<" "<<#c<<" = "<<c<<" "<<#d<<" = "<<d<<endl;
#define debug5(a,b,c,d,e) cout<<#a<<" = "<<a<<" "<<#b<<" = "<<b<<" "<<#c<<" = "<<c<<" "<<#d<<" = "<<d<<" "<<#e<<" = "<<e<<endl;
#define endl "\n"
#define fi first
#define se second
#define int long long
//#define int __int128
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
typedef pair<LL,LL> PLL;
//#pragma GCC optimize(3,"Ofast","inline")
//#pragma GCC optimize(2)
inline int rd()
{
int f=1,x=0;char c=getchar();
while(c<'0'||'9'<c){if(c=='-')f=-1;c=getchar();}
while('0'<=c&&c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
return f*x;
}
//常数定义
const double eps = 1e-4;
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int N = 1e5+10;
int a[N];
int L[N],R[N];
struct node{
int l,r;
int sum,ms/*maxsum*/,ml,mr/*maxl,maxr*/;
}tree[N*4];
void PushUp(int i)
{
tree[i].sum=tree[i<<1].sum+tree[i<<1|1].sum;
tree[i].ml=max(tree[i<<1].sum+tree[i<<1|1].ml,tree[i<<1].ml);
tree[i].mr=max(tree[i<<1|1].sum+tree[i<<1].mr,tree[i<<1|1].mr);
tree[i].ms=max(max(tree[i<<1].ms,tree[i<<1|1].ms),tree[i<<1].mr+tree[i<<1|1].ml);
}
void build(int i,int l,int r)
{
tree[i].l=l,tree[i].r=r;
if(l==r)
{
tree[i].sum=tree[i].ml=tree[i].mr=tree[i].ms=a[l];
return ;
}
int mid=(l+r)>>1;
build(i<<1,l,mid);
build(i<<1|1,mid+1,r);
PushUp(i);
}
void update(int i,int pos,int val)
{
if(tree[i].l==tree[i].r)
{
tree[i].ms=tree[i].ml=tree[i].mr=tree[i].sum=val;
return ;
}
int mid=(tree[i].l+tree[i].r)>>1;
if(pos<=mid)
update(i<<1,pos,val);
else update(i<<1|1,pos,val);
PushUp(i);
}
node query(int i,int l,int r)
{
if(l<=tree[i].l&&tree[i].r<=r)
return tree[i];
int mid=(tree[i].l+tree[i].r)>>1;
if(r<=mid) return query(i<<1,l,r);
else if(l>mid) return query(i<<1|1,l,r);
else
{
node x=query(i<<1,l,r),y=query(i<<1|1,l,r),res;
//合并答案
res.sum=x.sum+y.sum;
res.ml=max(x.sum+y.ml,x.ml);
res.mr=max(y.sum+x.mr,y.mr);
res.ms=max(max(x.ms,y.ms),x.mr+y.ml);
return res;
}
}
void solve()
{
int n;cin >> n;
a[0] = a[n+1] = 100;
for(int i = 1;i <= n;i ++)
{
cin >> a[i];
}
stack<int> sta;
for(int i = 1;i <= n;i ++)
{
while(sta.size() && a[sta.top()] <= a[i])
{
sta.pop();
}
if(sta.empty()) L[i] = 1;
else L[i] = sta.top() + 1;
sta.push(i);
}
while(sta.size())sta.pop();
for(int i = n;i >= 1;i --)
{
while(sta.size() && a[sta.top()] <= a[i])
{
sta.pop();
}
if(sta.empty()) R[i] = n;
else R[i] = sta.top() - 1;
sta.push(i);
}
build(1,1,n);
//for(int i = 1;i <= n ;i ++)update(1,i,a[i]);
int ans = 0;
for(int i = 1;i <= n ;i ++)
{
node now = query(1,L[i],R[i]);
//debug4(i,L[i],R[i],now.ms);
ans = max(ans,now.ms - a[i]);
}
//debug4(4,4,13,query(1,4,12).ms);
cout << ans << endl;
}
signed main()
{
/*
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
*/
int T = 1;//cin >> T;
while(T--){
//puts(solve()?"YES":"NO");
solve();
}
return 0;
}
/*
*/
Powered by Waline v2.15.5