跳至主要內容

B. Tree Tag(贪心+树的最长直径)

俄罗斯刺沙蓬...大约 2 分钟

题目

B. Tree Tagopen in new window

题意

img
img

思路

  • 因为这是一颗树,所以不管怎么追逐,我们都可以理解为在同一条路上追逐(去掉我们不走的路,就是一个线段)
  • 首先,如果da > db,显然能追上,进一步,da == db时,因为路径的长度是有限的,也显然可以追上
  • 因为树上任意两点的最短路径是固定的,所以a点可以一直朝着b追,而b是无法走回头路的(至少在a的范围外)
  • 所以只存在当a刚好可以追上b时(da == dista_b),b >2*a才可以逃脱,bob胜利
  • 还要注意一点,如果整棵树的最长直径不大于2*a,那么显然bob无法逃脱,alice胜利。对于这一步,可以跑树的最长直径板子
  • 还有一点,alice先手,直接抓到bob,alice胜利。判断ab之间距离

代码

const int N = 2e5+10;
int h[N], e[N], ne[N], idx;
void add(int a,int b)
{
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx++;
}

int maxlen = 0, distab = 0;
int n, a, b, da, db;
int dfs(int u,int fa)
{
    int l0 = 0, l1 = 0;
    for (int i = h[u]; i != -1;i = ne[i])
    {
        if(e[i] == fa)
            continue;
        int len = dfs(e[i], u) + 1;
        if(len >= l0)
            l1 = l0, l0 = len;
        else if(len > l1)
            l1 = len;
    }
    maxlen = max(maxlen, l0 + l1);
    return l0;
}
int dfs1(int u, int fa, int dis)
{
    if(u == b)
        distab = dis;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        if (e[i] == fa)
            continue;
        dfs1(e[i], u, dis + 1);
    }
}
void solve()
{
    maxlen = 0;
    cin >> n >> a >> b >> da >> db;
    for (int i = 1; i <= n;i ++)
        h[i] = -1;
    for (int i = 0; i < n-1;i ++)
    {
        int a, b;
        cin >> a >> b;
        add(a, b);
        add(b, a);
    }

    if(da * 2 >= db)
    {
        cout << "Alice" << endl;
        return;
    }

    dfs(1, -1);
    // debug1(maxlen);
    dfs1(a, -1,0);
    if(maxlen <= da*2 || distab <= da)
        cout << "Alice" << endl;
    else
        cout << "Bob" << endl;
}

评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v2.15.5