更新数组后处理求和查询(模板+普通线段树熟练掌握)
...大约 2 分钟
题目
思路
- 操作2和操作3都非常好实现,直接累加一个和就行
- 关键在于操作1(nums1数组所有元素大小在0~1之间)翻转
- 线段树相比树状数组更好理解
- 具体细节见代码
代码
class Solution {
typedef long long LL;
static const int N = 100010;
int n, m;
int w[N];
struct Node
{
int l, r;
LL sum, add;//懒标记:是否翻转过
}tr[N * 4];
void pushup(int u)
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void pushdown(int u)
{
auto &root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
if (root.add)
{
left.add ^= root.add;
left.sum = (LL)(left.r - left.l + 1 - left.sum);
right.add ^= root.add;
right.sum = (LL)(right.r - right.l + 1 - right.sum);
root.add = 0;
}
}
void build(int u, int l, int r)
{
if (l == r) tr[u] = {l, r, w[r], 0};
else
{
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
void modify(int u, int l, int r, int d)
{
if (tr[u].l >= l && tr[u].r <= r)
{
tr[u].add ^= d;
tr[u].sum = (LL)(tr[u].r - tr[u].l + 1 - tr[u].sum);
}
else // 一定要分裂
{
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid) modify(u << 1, l, r, d);
if (r > mid) modify(u << 1 | 1, l, r, d);
pushup(u);
}
}
LL query(int u, int l, int r)
{
if (tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
LL sum = 0;
if (l <= mid) sum = query(u << 1, l, r);
if (r > mid) sum += query(u << 1 | 1, l, r);
return sum;
}
public:
vector<long long> handleQuery(vector<int>& nums1, vector<int>& nums2, vector<vector<int>>& queries) {
int n = nums1.size();
LL add = 0;
for(auto &x:nums2)add += x;
for(int i = 1;i <= n;i ++)
{
w[i] = nums1[i-1];
}
build(1,1,n);
vector<LL> ans;
for(auto &t:queries)
{
if(t[0] == 1)modify(1,t[1]+1,t[2]+1,1);
else if(t[0] == 2)add += tr[1].sum*t[1];
else ans.push_back(add);
}
return ans;
}
};
Powered by Waline v2.15.5